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Systems  that harvest  environmental  energy  must  carefully  regulate  their  usage  to satisfy  their demand.
Regulating  energy  usage  is  challenging  if a system’s  demands  are  not  elastic,  since  it  cannot  precisely
scale  its  usage  to match  its  supply.  Instead,  the  system  must  choose  how  to satisfy  its  demands  based
on  its current  energy  reserves  and  predictions  of its future  energy  supply.  In  this paper,  we show  that
prediction  strategies  that  use  weather  forecasts  are  more  accurate  than  prediction  strategies  based  on  the
past,  and  are  capable  of  improving  the  performance  of a  variety  of  systems.  We  analyze  weather  forecast,
eather forecast
nergy prediction
reen computing

observational,  and  energy  harvesting  data  to  formulate  a  model  that  translates  a  weather  forecast  to  a
solar or  wind  energy  harvesting  prediction,  and  quantify  its  accuracy.  We  then  compare  the  performance
of  three  types  of  energy  harvesting  systems—a  lexicographically  fair  sensor  network,  an  off-the-grid
sensor  testbed,  and  a solar-powered  smart  home—using  prediction  models  based  on  both  forecasts  and
the  past.  In  each  case, forecast-based  predictions  significantly  improve  system  performance.
. Introduction

Energy harvesting systems collect and store environmental
nergy to either sustain continuous operation without exter-
al power sources or reduce energy consumption from burning
dirty” fossil fuels.1 Harvesting environmental energy is useful
or a diverse range of cyber-physical systems. For instance, past
esearch focuses on energy harvesting sensor networks, since they
re often deployed in remote locations without access to the power
rid [27,10]. As another example, cloud data centers are integrating
enewable energy to offset the growing monetary costs and car-
on emissions from rising electricity demands [21,11,3]. Finally, net
etering combined with time-of-use (TOU) pricing models provide

trong financial incentives for home owners to augment grid power
ith on-site renewables [31].

Energy-neutral systems always consume less than or equal to
he energy they harvest [13]. An underlying goal of most energy

arvesting systems is to operate as close to energy-neutral as pos-
ible to prevent downtime from battery depletions. The strategy

 system uses to achieve energy-neutral operation depends on
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1 This paper is an extension of a previous conference paper [22].
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the specific characteristics of its energy source, battery, hardware
components, and workload. Achieving energy-neutral operation
is simple if an energy source produces power faster than a sys-
tem can consume it. Unfortunately, environmental energy sources,
such as solar and wind, are intermittent and vary significantly over
time due to weather conditions. As a result, these energy sources
typically do not produce enough power to continuously operate a
system’s hardware components.

Instead, systems must adapt their energy usage over time to
ensure they do not consume more energy than they are able to har-
vest and store. Ideal systems are energy-proportional, such that their
energy consumption scales linearly with their workload’s inten-
sity [5]. Thus, a system with elastic workload demands achieves
energy-neutral operation by changing the intensity of its workload,
and hence its energy usage, at fine time-scales to match the energy
it harvests. Prior work on energy harvesting primarily focuses on
systems with energy-proportional components that have elastic
workload demands [8,12,13,15,16,26–28]. Maintaining energy-
neutral operation in a system with inelastic workload demands using
components that are not energy-proportional poses new chal-
lenges, since the system is unable to precisely change the intensity
of its workload and energy usage to match the energy it harvests.

The system must choose how to satisfy its workload’s demands

based on its current and expected energy supply. Inelastic
demands derive from either external requests, such as satisfy-
ing requests from system users, or internal objectives, such as
maintaining a stable workload for a long period of time. The former

dx.doi.org/10.1016/j.suscom.2014.07.005
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2014.07.005&domain=pdf
mailto:nksharma@cs.umass.edu
mailto:jgummeson@ecs.umass.edu
mailto:irwin@ecs.umass.edu
mailto:zt@umbc.edu
mailto:shenoy@cs.umass.edu
dx.doi.org/10.1016/j.suscom.2014.07.005


g: Info

i
h
p
l
s
s
w
i
t

v
u
f
s
y
f
t
h
i
r
n
w
s
i
m
t
m
c

o
S
v
t
t
w
i
f

l
d
M
N
f
e
N

d
l
v
t
m
b
f
r
o
a

v
t
w
t
T
f
s
p
o

N. Sharma et al. / Sustainable Computin

s relevant to both off-the-grid sensor testbeds [9,23,29] and energy
arvesting smart homes, since external testbed users or home occu-
ants, respectively, dictate the workload’s energy demands. The

atter is relevant to lexicographically fair energy harvesting sensor
ystems, since the primary goal is to maintain steady and fair node
ensing rates for a target time period [10]. As others have noted,
orkload scheduling algorithms in energy harvesting systems with

nelastic demands are highly sensitive to energy harvesting predic-
ions [18].

While past work recognizes the need for accurate energy har-
esting predictions, prior prediction methods derive from the
nderlying idea that the past is an accurate predictor of the
uture [10,14,18,19]. While the past is accurate for both sufficiently
hort, i.e., seconds to minutes, and sufficiently long, i.e., months to
ears, time-scales, we  show in Section 2 that predictions derived
rom weather forecasts are more accurate at the medium-length
ime-scales, i.e., hours to days, relevant to a large class of energy
arvesting systems. Our empirical findings match the same intu-

tion that causes people to tune into a nightly weather forecast,
ather than step outside, to find out the expected weather for the
ext few days. In this paper, we design a method for leveraging
eather forecasts to improve the performance of energy harvesting

ystems. In particular, as discussed below, we (i) analyze histor-
cal weather data to identify the time-scales when forecasts are

ost accurate, (ii) develop a model that maps a specific forecast
o an energy harvesting prediction, and (iii) quantify the perfor-

ance improvements from using our model in three real-world
ase studies.

Analyze Historical Weather Data. We  analyze extensive traces
f past forecast and observational data from the National Weather
ervice (NWS), as well as fine-grain solar and wind energy har-
esting and observational data from our own deployment. We  use
hese traces to quantify how well both weather forecasts and mul-
iple variants of predictions using the immediate past predict the
eather phenomena—sky condition and wind speed—that most

mpact solar and wind energy harvesting at time-scales ranging
rom 1 h to 72 h in the future.

To demonstrate the broad applicability of our approach, we ana-
yze data from five locations within the United States with five
istinct climate profiles. These locations include Chicopee Falls,
assachusetts, Daytona Beach, Florida, Phoenix, Arizona, Norfolk,
ebraska, and Seattle, Washington. We  find that in all cases NWS

orecasts in these regions are a better predictor of the future than
xisting prediction strategies based on the immediate past over
WS  forecast time-scales for both sky condition and wind speed.

Formulate Forecast→Energy Model. We  use our observational
ata to correlate (i) weather forecasts for our region with our own

ocal weather observations and (ii) our own local weather obser-
ations with the energy harvested by our solar panel and wind
urbine deployment. We  use both data sets to formulate a simple

odel that predicts how much energy the solar panel and wind tur-
ine will harvest in the future given weather forecasts every hour
rom 1 h to 72 h in the future. To evaluate the forecast accuracy of
emote regions, we assume that the model we develop using our
wn local data collection, as well as the NWS  weather observations,
re accurate.

Case Studies. We  quantify the benefits of using energy har-
esting predictions based on weather forecasts in the context of
hree different types of energy harvesting cyber-physical systems
ith inelastic demand. The first system is a deployed off-the-grid

estbed [23] we have built as part of the NSF GENI prototype [20].
he second system is inspired by recent work on lexicographically

air energy harvesting sensor systems [10]. The third system is a
olar-powered smart home that minimizes electricity costs for TOU
ricing by deciding when to draw power from the grid versus an
n-site battery.
rmatics and Systems 4 (2014) 160–171 161

In each case, we compare the performance of a forecast-based
approach with one or more prediction models that use the imme-
diate past to predict the future. For each system, we find that our
forecast-based approach is significantly better than any prediction
scheme based on the immediate past for the system’s relevant
performance metrics, e.g., requests satisfied, combined length of
power outages, and monetary cost.

2. The case for using forecasts

To motivate the use of weather forecasts for prediction, we  ana-
lyze both forecast and observational data from the year 2008 to
compare the accuracy, at different time-scales, of predictions based
on NWS  forecasts with predictions based on the past. Others have
noted that over appropriate time-scales and under ideal conditions
the past predicts the future for both solar [4,6,13] and wind [14]
power. However, our analysis leads to four observations that moti-
vate the use of forecasts, instead of the past, for predictions over
time-scales of hours to days. We  use data from an extended deploy-
ment of a weather station, wind turbine, and solar panel on the
roof of the Computer Science Building at the University of Mas-
sachusetts Amherst, as well as data from NWS  observations, the
National Digital Forecast Database, and the National Solar Radia-
tion Data Base. Our observational traces are available upon request
from http://traces.cs.umass.edu and the NWS  traces are available
upon request from http://www.nws.noaa.gov/ndfd/.

Our weather station reports wind speed and solar radiation
every 5 min, while the NWS  reports an observation every hour and
an archival forecast every 3 h for each region of the country for the
last few years. Each forecast includes predictions every 3 h from
3 h to 72 h in the future. Additionally, real-time forecasts are avail-
able every hour from 1 h to 72 h in the future. Unless otherwise
noted, we use our own weather station’s observations for Amherst,
Massachusetts, and NWS  observations for other regions. While our
weather station and the NWS  report a variety of weather metrics,
we focus on the two metrics with the most direct relationship to the
energy our solar panel and wind turbine harvest: sky condition, as
a percentage of cloud cover between 0% and 100%, and wind speed,
in miles per hour. We show how these metrics impact solar and
wind energy harvesting in Section 3.

To compare with forecast-based predictions, we  first define a
basic prediction strategy, which we term past predicts the future or
PPF. The basic PPF strategy predicts that a weather metric’s value
in the next N time units will exactly match the observations of
that metric from the last N time units. For solar energy harvesting,
there are multiple variants of this basic approach in prior work. We
discuss these variants in Section 5, which adjust the basic PPF strat-
egy to adapt to seasonal variations in sunlight [13,14,26] or sudden
changes in cloud cover [19]. In this section, we focus on the basic
PPF model only to motivate the limitations of solely using the past
to predict the future. For wind energy harvesting, we  have found
no variants of the basic PPF approach in prior work.

The accuracy of the PPF model or any of its variants is dependent
on the climate at a specific location. For example, a PPF model for
solar power may  be more accurate in areas with consistent sun-
light and little variation in weather patterns, such as the desert in
Australia [6], while a PPF model for wind power may  be more accu-
rate in areas likely to be in the path of a jet stream. Regardless of
the area, though, prediction strategies without the aid of detailed
weather forecasts must inherently rely on the past. Both our intu-
ition and our empirical measurements lead to our first observation:

there are many areas, including Amherst, Massachusetts, that do
not have consistent weather patterns.

Observation #1: Sky condition and wind speed show significant
inter-day and intra-day variations, as a result of changing weather in

http://traces.cs.umass.edu
http://www.nws.noaa.gov/ndfd/
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Fig. 1. Power generated during a 12 day period in October, 2009 from our solar panel (a) and wind turbine (b).
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RMSE between the observational sky condition and the sky condi-
tion using PPF for the same regions. As expected, the accuracy of
the sky condition forecast decreases as the time horizon increases.
ig. 2. The error in sky condition (a) and wind speed (b) when using the past to predi
or  Amherst, Massachusetts.

mherst, Massachusetts, as well as other regions, including Arizona,
lorida, Washington, and Nebraska.

While we expect wind to be intermittent, the data for the regions
e examine also shows significant variations in the sky condition

bserved by the NWS  both within each day and between days. As
n example from our deployment, Fig. 1(a) and (b) shows the solar
nd wind power we harvest, respectively, during a 12 day period in
ctober. As expected, wind is highly variable, with the wind turbine
arvesting the most energy on days 3, 4, and 7, while harvesting

esser amounts on days 1, 6, 9, 10, and 12. The turbine harvests
early zero energy on days 2, 5, 8, and 11. Surprisingly, despite

ts diurnal nature, solar power shows significant variations as well
ue to cloud cover, with the solar panel harvesting less than half its
aximum possible energy on days 2, 3, 7, 8, and 11, with significant

ariations within each day. Our solar panel actually harvests no
nergy on day 11.

Even when the solar panel or wind turbine harvest the same
mount of energy on two  different days, the profile of power gen-
ration within each day is variable. For example, on both day 3
nd 4 our solar panel harvests similar amounts of energy, but the
ower profile for day 4 is more consistent and less variable than day
. Overall, the solar panel and wind turbine harvest less than 1/2
heir rated daily maximum on 40% and 75% of the days, respectively.

hile we chose a 12 day period to enhance the readability of the
raph, we have witnessed a similar degree of day-to-day variation
hroughput our solar panel and wind turbine deployment.

Observation #2: Using PPF to predict the future is least accurate
t medium-length time-scales from 3 h to 1 week.

To evaluate the accuracy of the PPF model we focus on Amherst,
assachusetts, and calculate the root mean squared error (RMSE)

etween the average value of both sky condition and wind speed
ver an interval from t = 0 to t = N and from t = N to t = 2N for all

ossible intervals of length 2N in the year 2008, given that our
bservational data has a granularity of 5 min. RMSE is a standard
tatistical measure of the accuracy of values predicted by a model
ith respect to the values observed. Intuitively, the RMSE’s value
uture for different time intervals in 2008 at 1 h and 5 min  granularities, respectively,

quantifies the PPF model’s accuracy at different time-scales. For
instance, an RMSE of zero for an interval of length N indicates
that for all possible intervals of length N during the year the met-
ric’s average in the previous interval exactly predicts the metric’s
average in the next interval. The closer the RMSE is to zero for a
particular interval duration, the more accurate the past predicts
the future for that interval.

Fig. 2(a) and (b) shows the RMSE for sky condition and wind
speed, respectively, as a function of time interval duration N ran-
ging from 5 min to 6 months. Notice that we plot both graphs on
a log scale. The analysis shows that predictions based on the ppast
are most accurate at bot short (<2 min) and long time-scales (>10
days), and are least accurate in between. Moreover, wind speed
predictions based on the past tend to get better over long-term,
whereas sky condition predictions remain almost same after 10
days. For both sky condition and wind speed, the maximum inaccu-
racy occurs between 3 h and one week, as indicated by each graph’s
vertical lines.

Observation #3: Over NWS  forecast time-scales of 3 h to 3 days,
sky condition and wind speed forecasts are better predictors of the
future than the PPF model.

We next show that NWS  forecasts for the medium-length time-
scales of hours to days are more accurate than the PPF model. To
quantify the relative accuracy of weather forecasts, we use NWS
forecast data from three months in different seasons—January,
April, and September 2008—at all five of our locations. Fig. 3(a)
shows the RMSE between the observational sky condition and the
sky condition from the NWS  forecasts, as a function of the forecast
time horizon2 for multiple regions. Similarly, Fig. 3(b) shows the
2 We use “time horizon” and “time interval” interchangeably throughout the
paper.
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ig. 3. RMSE between the observed sky condition and the sky condition predicted
ranularities.

ince the RMSE of the sky condition forecast (<20) is less than the
MSE of the PPF model from Figs. 2(a) and 3(b) between 3 h and 3
ays (∼40–60) we conclude that the forecast is a better predictor
han the past for sky condition in every region we study, including
mherst, Massachusetts.

We  next compare the accuracy of the NWS  forecast for wind
peed with the accuracy of the PPF model. Fig. 4(a) shows the RMSE
etween the observational wind speed and the wind speed from the
WS forecast, as a function of the forecast time horizon for multiple

egions. Similarly, Fig. 4(b) shows the RMSE between the obser-
ational wind speed and the predicted wind speed using the PPF
odel for the same regions. As the figures show, the accuracy of the
ind speed forecast does not vary significantly for any future time
orizon. Since the RMSE of the NWS  wind speed forecast (<6) is less
han the RMSE of the PPF model from Fig. 2(b) and 4(b) between 3 h
nd 3 days, we conclude that the NWS  forecast is a better predic-
or than the past for wind speed in Amherst, Massachusetts, which
eads to our final observation.

Observation #4: We  conclude that using weather forecasts as a
asis for prediction should improve the performance of energy harvest-
ng systems with inelastic demands that make workload scheduling
ecisions over 3 h to 3 day time horizons.

. Forecast → energy model

To leverage our observations from the previous section, we for-
ulate models that predict the energy our solar panel and wind

urbine will harvest given a NWS  weather forecast. Note that our
odels are based on our specific solar panel and wind turbine,

s well as the weather forecasts at our location. In addition, we
ssume an unobstructed solar panel and wind turbine not affected
y shade from trees or buildings. Since we derive our model param-
ters empirically, they depend on the specific characteristics of our

eployment, and are not directly useful for other deployments.
hile the methods we use for building our models are applica-

le to other deployments, the accuracy we report is dependent on
he specific characteristics of our location’s climate. Further, since
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ig. 4. RMSE between the observed wind speed and those predicted by NWS  forecasts (a
WS  forecasts (a) and the PPF model (b) for different time intervals in 2008 at 1 h

we deploy our harvesting equipment in an open area, we do not
evaluate the effect of local conditions, such as shade from foliage
or wind shear from surrounding buildings, on our model.

Before discussing our model, we briefly describe our energy har-
vesting deployment, which consists of a battery, solar panel, and
wind turbine. Air-X manufactures our wind turbine, and rates its
maximum power output as 400 watts in 28 mile per hour winds.
The turbine uses an internal regulator to govern the power deliv-
ered to the battery to prevent overcharging when the battery
voltage increases beyond a threshold of 14.1 volts. Kyocera man-
ufactures our solar panel, and rates its maximum power output
as 65 watts at 17.4 volts under full sunlight. We connect the solar
panel to a deep-cycle battery through a TriStar T-60 charge con-
troller, which protects the battery from overcharging. Our battery
has an ideal capacity of 1260 watt-hours.

The purpose of our deployment is to measure power harvested
over time. As a result, we must ensure that the battery is never full,
since a full battery cannot harvest and store energy. To prevent our
system’s battery from becoming fully charged, we use an additional
T-60 load controller in conjunction with a 60 watt automotive bulb
to bleed the battery’s energy. The controller connects the load to
the battery at 13.6 volts and disconnects at 12.1 volts to ensure the
battery stays charged to 55% of its capacity. The final component of
our measurement system is a HOBO U30 wireless data logger. The
logger measures battery voltage, using a built-in analog-to-digital
converter, and electrical current, using an external current trans-
ducer for each energy source. The logger measures each quantity
every 30 s and stores a 5 min average locally. Each hour, the log-
ger uploads its log file to a server hosted by HOBO, where data is
publicly available for viewing through the HOBO web  interface.

3.1. Sky condition → solar power model
We base our model for solar energy on a simple premise: if the
sky condition reports a cloud cover of N% then the observed solar
radiation, as well as our solar panel’s power production, will be
(100− N) % of the maximum possible under ideal cloudless skies. For
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) and using the past to predict the future (b) for different time intervals in 2008.
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ig. 5. Relationship between the solar radiation our weather station observes and
he  power generated by our solar panel.

xample, if the 3 h forecast predicts a sky condition with 50% cloud
over, and the maximum possible solar power production is 60
atts over that 3 h interval, then the solar power prediction for that

 h interval will be 60 * 0.5 = 30 watts. Given our simple premise, to
ormulate our model we must first estimate the maximum possible
olar power production at any time of the day and year, given the
ilt of the earth’s axis and the sun’s diurnal nature. Since our solar
anel deployment has not been active for an entire year, we use our
eather station’s traces of solar radiation to construct our model.

.1.1. Computing solar power from solar radiation
We first derive the relationship between the solar radiation our

eather station observes and the power our solar panel produces
sing our trace data, as shown in Fig. 5. The relationship should
e linear, since our solar panel produces energy in proportion to
he solar radiation with a constant factor loss due to inefficiency.
s expected, the relationship we observe is close to linear. We  use

he least-squares approach to fit the following regression line to
he data, which we use to convert the solar radiation our weather
tation observes to the solar power our panel produces, where
ower is in units of watts and solar radiation is in units of watt/m2.

olarPower = 0.0444 ∗ Radiation − 2.65 (1)
.1.2. Computing the maximum possible solar power
We next derive an estimate for the maximum solar power pos-

ible at a given time of the day and year. The value is dependent on
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multiple factors, including the time of the day, day of the month,
month of the year, and geographic location. While highly accurate
models that take into account all of these factors are possible, we
use a simple approximation that assumes the change in position
of the sun relative to a specific location does not vary significantly
within any single month. Thus, we use a profile for a single sunny
day in each month of the year as the baseline for computing the
ideal maximum power on any day of that month. We  select a sin-
gle sunny day with no cloud cover for each month from the year
2008 using our weather station data and observational data from
National Solar Radiation Database.

Fig. 6(a) shows the profile of solar power our panel would har-
vest on three perfectly clear and sunny days in January 2008, May
2008, and September 2008. Similarly, Figs. 6(b)–(d) show the profile
of solar power our solar panel would harvest in the other loca-
tions we  study, including Arizona, Nebraska, and Washington, on
three perfectly clear and sunny days in January 2008, May  2008,
and September 2008. For the graph, we  convert the solar radiation
observed by our weather station and the observational radiation
data from National Solar Radiation Database on these days to the
expected solar power harvested by our solar panel using Eq. (1)
from above. We  find that power is quadratically related to the time
of day. Since daylight hours change throughout the year, the power
profile for a sunny day also changes. Of the three months in the
figure, May  has the maximum possible potential for power gener-
ation since it is nearest to the summer solstice, while January has
the least possible potential for power generation since it is nearest
to the winter solstice. For each month, we fit the quadratic func-
tion below, where a, b, and c are the parameters of the quadratic
function, and Time is in hours after 12 am.  The parameters a, b, and
c for each month in Amherst, Massachusetts are given in Table 1.

MaxPower = a ∗ (Time + b)2 + c (2)

3.1.3. Solar model
To complete our model, we compute the power our solar panel
generates using the equation below, where MaxPower is in units
of watts from Eq. (2) and SkyCondition is the percentage cloud
cover from the NWS. Fig. 7(a) compares the observed solar power
generated by our panel with the solar power predicted by our
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 September, and the quadratic functions f(x), g(x), and h(x) we fit to each profile,
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Fig. 7. Power output from our solar panel and the 

odel for Amherst, Massachusetts (three hours into the future). The
raph demonstrates that the daily average difference between each
bserved and predicted value is small. Further, the model tends
o be conservative when incorrect: the predictions are generally
ess than the observations, which reduces battery depletions from
ncorrect predictions.

ower = MaxPower ∗ (1 − SkyCondition) (3)

.2. Wind speed → wind power model

Our wind power model is simpler than our solar model, because,
s opposed to sky condition, both our weather station and the NWS
orecast report wind speed. Fig. 8 shows the recorded power output
f the wind turbine for different recorded wind speeds, as well as
urves showing the power ratings for the turbine in both turbulent
nd steady winds. Wind power production is known to be a cubic
unction of the wind speed [2].

ower = 0.01787485 ∗ (WindSpeed)3 − 3.4013 (4)
We fit the cubic power curve in Eq. (4) to the observed data
sing the least-squares method to generate our wind power model,
here Power is in units of watts and WindSpeed is in units of miles

able 1
alues for a, b, and c in our quadratic solar power model.

Month a b c

January −1.15 −12.75 21.45
February −1.15 −12.75 29.13
March −1.15 −12.75 35.97
April −1.25 −13.5 43.72
May  −1.1 −13.5 43.5
June −1.1 −13.5 43.4
July  −1 −13.5 40.35
August −1.15 −13.5 40
September −1.15 −13.5 36.32
October −1 −13.35 27
November −1.45 −12 22.66
December −1.15 −12.5 16.79
SMM(d)

r output predicted by different prediction models.

per hour. Our cubic function is nearly half-way in between the rated
power curves for turbulent and steady winds. Fig. 9(a) compares
the observed wind power generated by our wind turbine with the
wind power predicted by our forecast model for Amherst, Mas-
sachusetts (three hours into the future). The graph demonstrates
that the daily average difference between each observed and pre-
dicted value is small. Further, the model tends to be conservative
when incorrect: the predictions are generally less than the observa-
tions, which reduces battery depletions from incorrect predictions.
Note that the wind turbine stops producing power near 28 miles
per hour, so our function ramps down to 0 at that point.

3.3. Compensating for forecast errors

Our solar and wind power models convert an observed sky
condition and wind speed to the expected solar and wind power
generated by our deployment. To convert a forecast for sky condi-
tion and wind speed to a prediction for solar and wind power we
multiply the output of both models with an error constant ˛. We
base our  ̨ constant for each forecast time horizon on the RMSE

for sky condition and wind speed forecasts in the previous section.
Thus, the greater the expected error in the forecast at a particular
future time, the smaller the value of  ̨ in our model. We  use  ̨ = 0.8

 0

 10

 20

 30

 40

 5  10  15  20

P
ow

er
 (

w
at

ts
)

Wind Speed (mph)

Recorded Values
Steady Wind Rating

Turbulent Wind Rating
Fitted Cubic Function

Fig. 8. Power output from our wind turbine and the power output predicted by our
wind power model.



1 g: Info

i
r

3

a
(
M

t
t
h
a
s
W
t
f
p

E

R
m
w
e
m
t
u
t
t
i
w
i

E

t
d

66 N. Sharma et al. / Sustainable Computin

n our model, which we derive from the accuracy of forecasts in our
egion.

.4. PPF variants

In addition to the basic PPF model, we evaluate three PPF vari-
nts from prior work: Exponentially Weighted Moving Average
EWMA), Simple Moving Median (SMM), and Weather Conditioned

oving Average (WCMA). We  briefly describe each approach.
The purpose of the EWMA  variant is to adapt to seasonal varia-

ions in output. Thus, EWMA  divides a day into slots and predicts
he energy for a particular slot as the weighted sum of the energy
arvested in the same slot on N previous days [13]. EWMA  assigns
n exponentially decaying weighting factor to each previous day,
ince the recent past tends to provide more accurate predictions.

e  choose each slot’s length to be 60 min, since the environmen-
al variation within each hour is typically small and to provide a
air comparison with our forecast-based approach. For EWMA,  the
redicted energy at a time slot t on ith day is given as:

t
predict(i) = ˛Et

observe(i − 1) + (1 − ˛)Et
predict(i − 1) (5)

We empirically find that a weighting factor  ̨ = 0.1 minimizes the
MSE between the observed and predicted energy for our deploy-
ent based on historical data. SMM  is an another variant of PPF,
hich predicts the energy for a particular slot as the median of

nergy harvested in the same slots on N previous days. SMM  is
ore robust than EWMA  to high fluctuations or other anomalies in

he time series data. Finally, WCMA  is a variant of EWMA,  which
ses the current day’s, as well as previous days’, observational data
o make predictions [24,25]. In contrast to EWMA,  WCMA  considers
he weather conditions of previous slots in the current day. Thus,
t performs better than EWMA  during inconsistent or fluctuating

eather conditions. WCMA  predicts energy for any time slot t on
th day as:

t
predict(i) =  ̨ Et−1 (i) + GAPk(1 − ˛)Mt

D(i) (6)

observe

Where  ̨ is a weighting factor similar to EWMA,  and Mt
D(i) is

he mean of the observed values in time slot t over the past D
ays. GAPk is a factor that depends on past k slots and measures
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Fig. 9. Power output from our wind turbine and the power output predicted
rmatics and Systems 4 (2014) 160–171

the present weather conditions compared to the same conditions
over the previous days. Recas et al. [24] provide a a detailed descrip-
tion of calculating GAPk. For WCMA,  we find the optimal values of
three parameters—˛, D, k—that minimize the RMSE between the
observational energy and the predicted energy as  ̨ = 0.4, D = 6, and
k = 15 for our solar panel, and  ̨ = 0.9, D = 7, and k = 14 for our wind
turbine. Similar to EWMA,  we assume a slot duration of 60 min. We
use the optimal values for the EWMA  and WCMA  parameters in our
evaluation.

Fig. 7 compares the observed solar power generated by our panel
with the solar power predicted by all four prediction models: (a)
Forecast Predicts Future (FPF), (b) Exponentially Weighted Mov-
ing Average (EWMA), (c) Weather Conditioned Moving Average
(WCMA), and (d) Simple Moving Median (SMM). Since the figure
plots predictions only three hours into the future, it represents a
best case scenario for the prediction models based on the past. The
figure demonstrates that the forecast-based approach and WCMA
perform significantly better than the EWMA  or SMM  model, espe-
cially when environmental conditions change. Although WCMA’s
accuracy is similar on average to our forecast-based approach,
it over-predicts on most days, which results in frequent battery
depletions in energy harvesting systems.

Similarly, Fig. 9 compares the observed wind power generated
by our turbine with the wind power predicted by all four pre-
diction models. Again, WCMA  and our forecast-based approach
provide similar prediction accuracy for wind power, while EWMA
and SMM  are much less accurate due to the wind’s intermittent
nature. WCMA  also suffers from over prediction with wind energy,
while our forecast-based approach tends to under predict when it is
inaccurate. As we  show in our case studies, over prediction causes
unexpected battery depletions that decrease system performance.
Our case studies also indicate that WCMA  has worse performance
at longer time-scales, e.g., day-ahead predictions.

3.5. Forecast-WCMA hybrid
As the previous section indicates, the WCMA  variant of PPF per-
forms well when weather does not vary significantly, while a purely
forecast-based approach performs well for dramatic weather
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 by different prediction models over the first 3 weeks of October, 2009.
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ig. 10. Power output from our solar panel (a) and wind turbine (b) and the power 

ariations. To gain the benefits of both approaches, we  introduce
 Forecast-WCMA hybrid approach. The approach assigns weights
o each technique that vary dynamically based on prior prediction
ccuracy. More formally, the model predicts energy for a time slot

 as:

t
Hybrid = ˇEt

Forecast + (1 − ˇ)Et
WCMA (7)

 = et−1
WCMA

et−1
Forecast + et−1

WCMA
(8)

here Et
Hybrid, Et

Forecast , and Et
WCMA represent the energy predic-

ion for time slot t, using the hybrid-, forecast-, and WCMA-based
pproach, respectively, and et−1

Forecast
and et−1

WCMA
represent the abso-

ute value of the prediction error for the previous slot for each
pproach. Fig. 10 demonstrates that the hybrid approach provides
etter prediction accuracy than either the forecast-based approach
r WCMA.  For the experiment, the RMSE for the hybrid approach
2.32 for solar, and 2.84 for wind) is lower than the RMSE for the
orecast-based (FPF) approach (3.12 for solar, and 2.95 for wind) or
or WCMA  (2.96 for solar, and 3.05 for wind).

. Case studies

We  evaluate our models from the previous section in the context
f three types of energy harvesting systems with inelastic demand:
n off-the-grid testbed that we have built as part of the NSF GENI
rototype [23] that leases virtuallized resources to users, a lexico-
raphically fair sensor network inspired by recent work [10], and a
mart home with on-site renewables. For each system, we quantify
ow much the use of forecast-based predictions increases the sys-
em’s relevant performance metrics when compared with both the
PF model and a conservative approach that does not use predic-
ions and only makes decisions based on the current battery level.
or each case study, we predict hour-by-hour energy harvesting
ne day in advance. Thus, each day’s predictions are a combination
f a single 1-, 2-, 3- . . . 23-, 24-h prediction. Finally, we quantify the
mpact of battery capacity on performance. We  refer to our forecast-
ased model as FPF in our graphs. Note that our objective is not to
ptimize any specific objective function but to demonstrate that
etter predictions lead to better performance for real-world energy
arvesting sensor systems.

.1. ViSE testbed

ViSE, which stands for Virtualized Sensing Environment, is a 4-
ode high-power sensor testbed we built as part of GENI [20]. A ViSE
ensor node consists of a conventional x86-processor connected to
ultiple high-power sensor nodes, including a radar, video cam-
ra, and weather station. Our ViSE radar is based on a CASA radars,
hich while smaller than Doppler radars, require mounting on

arge towers above any obstructions. As with other GENI testbeds,
iSE leases external users access to a slice of its nodes upon request.
Wind(b)

t predicted by the hybrid prediction model over the first 3 weeks of October, 2009.

A lease ensures users access to an isolated partition of the testbed’s
resources for some duration. Since GENI coordinates access to mul-
tiple testbeds, it is important that each testbed satisfy its leases to
enable multi-testbed experiments, since not satisfying a lease may
stall an experiment, and thereby waste any resources reserved on
other testbeds.

When using harvested energy, ViSE must approve or reject lease
requests from external users based on its available energy supply.
The workload is an example of inelastic demand, since ViSE can-
not change its decision to accept or reject a lease request based
on new conditions after the initial decision is made. Further, ViSE
must make each decision without complete knowledge of its future
energy supply. A conservative approach is to reject all requests with
durations greater than each node’s expected operating time based
on its current reserve of stored energy. However, a conservative
approach may  reject more requests than necessary if some knowl-
edge of the future energy supply is known. An alternative approach
uses predictions of the future to determine whether or not to
approve each request, either using our model or a PPF-inspired
model. When using predictions, ViSE approves lease requests if
both the existing energy in the battery and the predicted energy
harvested while the lease is active is sufficient to satisfy the lease
over its duration. Note that our prediction-based approach not only
ensures that there is enough energy at the end of the lease, but also
throughout the lease based on the energy harvested while the lease
is active.

To evaluate the benefits of our models from Section 3 relative to
both the conservative approach and the variants of the PPF model,
we ran simulations based on our ViSE node’s power characteristics
using our traces of solar and wind power. Each ViSE node consumes
115 watts at full utilization when the radar is transmitting, with the
radar consuming 50 watts by itself [7]. Neither the radar nor the
compute node are energy-proportional. The radar consumes either
0 watts when off or 50 watts when transmitting, while the main
node’s power consumption scales linearly from 45 watts at idle to
65 watts at 100% utilization. Since a single wind turbine or solar
panel from our deployment is only sufficient to run our node for
a few hours each week, for our experiments we assume the use of
5 identical solar panels or 5 identical wind turbines. We  assume a
battery capacity capable of running our node at full utilization for
2 h.

For our experiments, ViSE makes decisions to accept or reject
lease requests at the beginning of each day, where each lease
reserves a virtual sensor, i.e., an isolated sliver of the sensor’s
resources, for 24 h. We  discuss ViSE’s approach to virtualizing sen-
sors in recent work [23]. We  assume that the workload includes
enough lease requests each day to completely consume the maxi-
mum  possible energy the solar panels or wind turbines can produce.

At each decision point, ViSE only accepts leases that it believes it
can satisfy based on a conservative approach, the NWS  forecast-
based model, or the variants of the PPF model (basic PPF, EWMA,
WCMA,  SMM,  and Hybrid), where we assume each virtual sensor
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ill operate at 1/24th of full utilization for the duration of the
ease. The performance metrics we use to evaluate the different
pproaches are (i) the number of leases ViSE approves and (ii) the
ercentage of approved leases ViSE satisfies without nodes running
ut of energy. Ideally, ViSE should never approve a lease that it does
ot have the energy to complete.

We evaluate ViSE separately for solar and wind energy. Fig. 11(a)
nd (b) shows the number of lease requests ViSE approves, and
umber of leases ViSE completes for the panels and turbines,
espectively. The experiments show that using forecast-based pre-
ictions results in better performance than either the conservative
pproach or the variants of the PPF model. With solar power,
PF and its variants approve more leases than our forecast-based
pproach, but complete only three-fourths of the leases it approves
ithout a node running out of energy. While the conservative

pproach completes all of the leases it approves without ever
epleting any node’s battery, it completes only half of the leases
f PPF. In contrast, our forecast-based approach combines the best
haracteristics of both: it completes nearly as many leases as the
PF model without depleting any batteries. Fig. 11(b) shows better
esults for wind power, since PPF is less useful for predicting wind
peed.

Note that an approach, such as PPF, that over predicts the avail-
ble energy tends to approve more jobs than it could complete,
nd, as a result, runs out of the energy more often. In contrast, an
pproach, such as FPF or conservative, that under predicts the avail-
ble energy might approve less requests, but is able to complete
lmost all of them, while rarely running out of energy.

.2. Lexicographically fair sensor systems

Computing lexicographically fair sensing rates in energy har-
esting sensor systems has been studied recently for both static

nd mobile networks [10]. Put simply, an assignment of sensing
ates to nodes is lexicographically fair if it is impossible to increase
he sensing rate of any node without decreasing the sensing rate
f another node due to either bandwidth or energy constraints.

Fig. 12. Maximum sensing rate and % of days one or more nodes run out of ener
ergy for different prediction schemes for both solar (a) and wind (b) power.

For energy harvesting systems, the primary constraint is that each
node must maintain energy-neutral operation. An assignment of
lexicographically fair rates will not be valid if the energy har-
vesting behavior changes due to weather conditions. However,
recomputing sensing rates for all nodes is time-consuming and
network-intensive, since it requires gathering the most recent
energy harvesting data from each node, computing new rates, and
distributing the new rates to all nodes in the network.

Thus, prior work sets a fixed coarse-grain time period, e.g., 1
day [10], to recompute the fair rate for each node based on the most
recent energy harvesting information. The duration of the time
period balances the expense of resetting rates globally with the risk
of any node running out of energy due to stale or imprecise energy
harvesting information. As a result, maintaining steady network-
wide sensing rates for a fixed time period represents an instance
of inelastic demand, since the system is not able to continuously
vary the sensing rates for all nodes, which ultimately determine the
energy demand, to precisely match the energy supply. The recom-
putation may  use either a conservative approach that only takes
into account current battery reserves or a prediction model that
accounts for expected future energy [10].

We  evaluate the use of our forecast-based predictions in a lex-
icographically fair sensor network in simulation. In this case, the
performance metrics we use are the (i) maximum rate allocated in a
24 h interval and (ii) the number of 24 h intervals where one or more
nodes run out of energy. We examine a networked setting based
on a deployment of five conventional TelosB motes, with the same
power characteristics as the nodes in [28] in a simple tree topol-
ogy using the distributed algorithm developed by Fan et al. [10] to
compute the network-wide rates every 24 h. We  view our use of
only five nodes as conservative: increasing the number of nodes in
the network also increases the benefits of better predictions, since,
as the number increases, more nodes are capable of depleting their

battery. For the TelosB simulation, we scale down the power out-
put to 1% of the power produced by both our 60 watt solar panel
and our 400 watt wind turbine to better match the characteristics
of the TelosB’s low energy demand.

gy for different prediction schemes for both solar (a) and wind (b) power.
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Fig. 12(a) shows that solar power predictions based on PPF over-
stimate the proper maximum rate, causing at least one node to
eplete its battery on nearly 50% of the days. In contrast, setting
he rates using our forecast-based approach results in at least one
ode depleting its battery on less than 5% of all days, while main-
aining 80% of the rate set using the PPF approach. As expected,

 conservative approach never depletes any batteries but sets a
ate near 45% of the rate using PPF. Fig. 12(b) shows similar results
or wind. However, since wind is more intermittent than solar,
oth the forecast-based and PPF approach have at least one node
hat runs out of power on more days. In both cases, the standard
eviation of sensing rates each day in the PPF model (∼7.4) are
ore than the standard deviation of the sensing rates using our

orecast-based approach (∼6.1). Thus, our forecast-based approach
aintains more consistent rates between each 24 h period than the

PF model, which is an important goal for steady rate allocation.

.3. Smart home

Our final case study examines how to use predictions to effi-
iently manage renewable energy in smart homes. Many homes
oday that use renewable solar energy leverage net metering to
educe costs. Net metering allows homes to sell excess energy
ack to the grid when the home does not need it. The price reduc-
ions from net metering are critical in providing additional financial
ncentives to reduce the cost of on-site renewables in homes. Unfor-
unately, net metering is not a scalable solution. The electric grid

ust always balance supply and demand by dispatching genera-
ors to match demand as it varies. At large scales across thousands
f homes, electricity demand is highly predictable and changes
lowly throughout the day, which permits well-planned generator
ispatch schedules. However, incorporating significant amounts of
olatile renewable energy sources into the grid disrupts dispatch
chedules and may  destabilize grid operations. As a result, state
aws often place caps on both the total number of participating
ustomers and/or the total amount of energy contributed per cus-
omer [1]. After exceeding these caps, utilities are not obligated to
urchase excess power. For example, Washington state caps the
otal number of participating customers at 0.25% of all customers.

In related work [31], we propose combining a small on-site bat-
ery with time-of-use electricity pricing to lower utility costs, and
rovide a financial incentive similar to net metering. The goal is to
etermine when to operate off the battery, e.g., when prices are
igh, versus the grid and when to charge the battery from the grid,
.g., when prices are low. However, the approach requires accurate
redictions of future solar generation to make effective charging
nd discharging decisions. Here, we apply and evaluate the per-
ormance of each of the solar generation prediction methods. We
xperiment with each methods in the context of simple residential
OU pricing model used by the Ontario Electric Board (OEB). The
EB divides rates into three categories: on-, mid-, and off-peak. The
n-peak rate is 10.7 ¢/kWh from 7 am to 11 am and from 5 pm to

 pm,  the mid-peak rate is 8.9 ¢/kWh from 11 am to 5 pm,  and the
ff-peak rate is 5.9 ¢/kWh from 9 pm to 7 am.  The OEB sets a dif-
erent fixed ratio for on-, mid-, and off-peak rates in the summer
May 1st–October 31st) and winter (November 1st–April 30th), and
n weekends and holidays. However, the exact rates change on a
onthly basis according to generation costs and demand. Residen-

ial TOU pricing is still a nascent concept; the rates above still do not
ccurately reflect the price of energy, which is much more volatile
n wholesale energy markets. In these markets, spot prices vary as
ittle as every 5 min  and may  differ by orders of magnitude each

ay.

Given electricity rates, the charging algorithm determines one
ay in advance a schedule for when the home should use the bat-
ery versus the grid for power, and when to charge the battery from
Fig. 13. The cost of electricity from the utility for different prediction models. The
forecast-based hybrid model results in a 12–23% cost decrease compared to others.

the grid. The inputs to the algorithm are predictions of how much
solar energy the home will harvest the next day, how much energy
the home will consume, the TOU rate plan as described above,
and the battery’s capacity and current energy level. We  assume
a 12 kWh  battery array, which is similar to the capacity of battery
in an electric car. We  then use second-by-second traces of home
power consumption from a real home, and quantify the cost sav-
ings from each prediction model. We  scale up one month of traces
from our solar panel deployment by 17 to align with the aggre-
gate energy consumption of the home. The final result is in Fig. 13,
which shows that using OEB rates, the forecast-based Hybrid pre-
diction model again results in the lowest cost with a bill of $38.60.
In contrast, the WCMA  model increases costs by 12% ($43.27), the
PPF model increases costs by 18% ($45.43), and finally the EWMA
model increases costs by 23% ($47.55).

We  view our results as conservative, since they are based on
today’s simple TOU pricing plans. More volatile TOU pricing plans
that better reflect the current price of energy would improve the
results, since there would be a greater penalty for misprediction.
That said, a 12–23% reduction in electricity bills provides additional
incentives for incorporating sophisticated prediction strategies into
smart homes.

4.4. Battery capacity

Battery capacity affects the performance of an energy harvest-
ing system by storing the surplus energy when energy demand is
less than the energy supply, and by providing extra energy when
energy demand is greater than the supply. For example, our energy
harvesting systems predict a fixed amount of energy available at
one hour granularities. If the system harvests more energy than
predicted, it is able to store the extra energy in its battery. Simi-
larly, if the system harvests less energy than expected, it may  use
the reserve energy in its battery energy to mitigate the impact of
the misprediction. Since battery cannot store more energy than its
capacity, harvested energy may  be wasted when the surplus energy
exceeds the battery capacity. Sharma et al. [21] shows the energy
vs voltage graph for a lead-acid battery, similar to the battery used
in this paper. A larger capacity battery is able to store more sur-
plus energy and, thus, prevent the system from depleting its energy
reserves when its demand exceeds the supply.

To study the impact of battery capacity in energy harvesting
systems, we divide a day into 24 1-h slots. At the end of a slot,
our energy harvesting system predicts the incoming energy for
the next slot and sends this information to the application. Please
note that the application’s energy demand for any slot is limited
to the energy predicted by the energy harvesting system for that
slot. For this experiment, we  do not care about the nature or type of

the application; we assume that its demand is equal to the energy
predicted by the system. Fig. 14 plots the percentage of slots the
battery ran out of energy for different prediction models used to
predict the energy for next slot by our energy harvesting system.
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For solar energy, our prediction model (based on the weather
orecast) outperforms the PPF model and its variants, whereas for
ind energy, our model and two variants of the PPF model—WCMA

nd SMM—perform equally well. Even for wind energy, our model
erforms better than WCMA  and SMM  for low capacity batteries
10 watts-h). Though EWMA  performs equally well, compared to
ther variants of PPF for solar energy, it performs poorly for wind
nergy with the battery depleting its energy reserves on almost half
f the days. Thus, EWMA  is suitable for consistent weather patterns,
ut not for inconsistent or intermittent weather patterns. WCMA
erforms better than all other PPF models—PPF, EWMA,  SMM—for
oth solar and wind energy.

. Prior work

We  know of no prior work that evaluates the use of forecast-
ased predictions in energy harvesting systems. Much of the
rior work on energy harvesting sensor systems assumes elas-
ic workload demands that do not require predictions, since the
ystem continually adapts its workload’s intensity and energy
sage to match its energy supply [13,26,28]. However, while Moser
t al. [18] assume perfect future knowledge of an energy source and
o not investigate prediction strategies, they do note that sched-
ling algorithms for workloads with inelastic demands are highly
ensitive to the accuracy of predictions. While our observation
bout the inter- and intra-day variations in solar radiation hold for
mherst, Massachusetts, prior work on solar harvesting assumes
iurnal behavior that is more consistent than we observe [6,30]. In
hese areas, the NWS  forecast-based approach may  be less effective.

Most prior work focuses on simple prediction schemes, such as
he PPF model, based on the immediate past [13,17]. As we show,
he simple PPF approach is not as accurate as a NWS  forecast-based
pproach for either solar or wind power at time-scales of hours to
ays. Kansal et al. [13] maintain an exponentially weighted mov-

ng average (EWMA) for solar power to achieve energy-neutral
peration in a system with elastic workload demands. The EWMA
pproach is a variant of PPF that adapts to seasonal variations
n solar radiation. However, EWMA  does not account for drastic
hanges in weather that the NWS  forecast predicts. Noh et al. [19]
se a historical model for solar radiation, akin to WCMA,  that main-
ains an expectation for each time slot in a day based on the previous
ay’s solar radiation reading, but down-scales all future time-slots

n a day by N% if it records a solar radiation reading N% less than
xpected.

The techniques above do not apply to wind speed or wind power
redictions, since the wind is more intermittent than solar radia-

ion and not diurnal in nature. We  know of no work that discusses
rediction strategies for wind speed. The recent commoditization
nd emergence of micro-wind turbines, such as the 400 watt Air-X
e use in our deployment, motivates further study of harnessing
acities. Each slot is of 1-h duration and the experiment is run over the first 3 weeks

wind power in sensor systems deployed at locations with ample
wind but little sunlight, i.e., during the winter in the extreme north
or south.

6. Conclusion

In this paper, we show how to leverage weather forecasts pro-
vided by the NWS  to enhance the ability of energy harvesting sensor
systems to satisfy their demand. We  analyze observational weather
data from our own  weather station, energy harvesting data from
our own  solar panel and wind turbine, and NWS  observational and
forecast data. Our analysis shows that weather predictions based
on NWS  forecasts are more accurate than predictions based on
the past in many regions of the United States, including Amherst,
Massachusetts. To leverage NWS  forecasts in sensor systems, we
formulate a model for our solar panel and wind turbine that con-
verts the forecast to an energy harvesting prediction. We  then
compare our models with other approaches in three case studies
of systems with inelastic workload demands—an off-the-grid dis-
tributed testbed, a lexicographically fair sensor system, and a smart
home—and show that for both solar and wind power our models our
forecast-based approach improves system performance. Designing
prediction models for obstructed energy harvesting is out of the
scope of this paper. In future, we  plan to extend our prediction mod-
els to consider obstructions due to trees and buildings. Finally, one
advantage of our approach is that it does not require training data
to learn a prediction model over time. Such models require a large
amount of training data, e.g., many years, especially for solar, since
each time of the day and each time of the year the sun has different
solar capacity at a given location. Our model is more appropriate
for new deployments that have not operated for many years, e.g.,
such as a homeowner that has newly installed solar panels.
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